Distributional and Entire Solutions of Ordinary Differential and Functional Differential Equations

نویسنده

  • JOSEPH WIENER
چکیده

A brief survey of recent results on distributional and entire solutlosof ordinary differential equations (ODE) and functional differential equations (FDE) is given. Emphasis is made on lnear equations with polynomial coefficients. Some work on generallzed-functlon solutions of integral equations is also mentioned.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The distributional Henstock-Kurzweil integral and measure differential equations

In the present paper, measure differential equations involving the distributional Henstock-Kurzweil integral are investigated. Theorems on the existence and structure of the set of solutions are established by using Schauder$^prime s$ fixed point theorem and Vidossich theorem. Two examples of the main results paper are presented. The new results are generalizations of some previous results in t...

متن کامل

Construction of measures of noncompactness of $C^k(Omega)$ and $C^k_0$ and their application to functional integral-differential equations

‎In this paper‎, ‎first‎, ‎we investigate the construction of compact sets of $ C^k$ and $ C_0^k$‎ ‎by proving ``$C^k‎, ‎C_0^k-version$‎" ‎of Arzel`{a}-Ascoli theorem‎, ‎and then introduce new measures of noncompactness on these spaces‎. ‎Finally‎, ‎as an application‎, ‎we study the existence of entire solutions for a class of the functional integral-differential equations by using Darbo's fixe...

متن کامل

APPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...

متن کامل

On The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method

In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...

متن کامل

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004